

Adaptive Focal Plane Array A Compact Spectral Imaging Sensor

William Gunning

March 5 2007

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 05 MAR 2007		2. REPORT TYPE N/A		3. DATES COVE	RED		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER					
Adaptive Focal Pla	g Sensor	5b. GRANT NUMBER					
		5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)				5d. PROJECT NUMBER			
					5e. TASK NUMBER		
		5f. WORK UNIT NUMBER					
7. PERFORMING ORGANI Teledyne Technolo		8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)					
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
	otes ems Technology Syn original document	-	•	on March 5	-7, 2007.		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 17	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Motivation for LWIR / MWIR Adaptive FPA

- Conventional hyperspectral imaging systems
 - Large and Heavy
 - Generate large volumes of data
 - Typically scanning systems
- Conventional multispectral imaging systems
 - Fixed detection wavelengths limit capability

AFPA Objective: Develop a compact spectral imaging sensor to enable enhanced target detection / ID in a device that can be deployed on SWAP-constrained platforms and provide real time information

- Wavelength tuned LWIR (8 11 μ m / $\Delta\lambda$ FWHM ~ 100 nm)
- Simultaneous pixel-registered broadband MWIR (3 5 μm)
- Spatially resolved, intelligent spectral analysis

AFPA Parameter Objectives

- MEMS tunable filter array integrated with a dual-band focal plane array
- Parameters:

- Tuning range (individual filters or checkerboard): 8.0 μ m \Rightarrow 11.0 μ m

Filter bandwidth (FWHM): 100 nm ± 20 nm @ 10.0 μm

MWIR detection band: ~ 3.5 – 5 μm (nominal)

Filter dimension: ~ 400μm center-to-center spacing

Filter optical fill factor: ≥ 50%

– FPA/ROIC: 640x480 20μm DB-FPA

Filter format: Spectral fovea (nominally 8 x 24 filters)

Operating temperature: ~ 80K

Filter tuning speed: ~ 1 msec

TS&I MEMS Filter / AFPA Architecture (Notional)

AFPA Phase II MEMS Tunable Filter Array

Advanced Information Systems

MEMS Fabry-Perot Filter Design

Filter Actuation

- Filter actuated by applying potential between moveable mirror and substrate mirror
- Displacement driven by electrostatic attraction
- Restoring force provided by Si flexure springs
- Prototype devices direct drive

GENERAL DYNAMICS

Advanced Information Systems

Modeled MWIR / LWIR Spectral Performance (Transmission Averaged over F/6.5 Incident cone)

MEMS Filter SEM Images

MEMS Tunable Filter Measured Optical Performance

Scanned Filter Transmission of Tunable CO₂ laser

Wavelength (µm)	Bandwidth (nm FWHM)
9.23	144
9.28	138
9.32	145
9.49	108
9.52	112
9.55	145
9.62	90
9.66	129

Filter

CO₂ Laser

LWIR Detector Spectral Response with Tunable MEMS Filter

Tunable MEMS Filter Mechanical Response

- Low energy dissipation in Si MEMS structure leads to mechanical "ringing" under vacuum operation
 - 300µs in air, but may be >10's (or even 1000's) msec in vacuum
- Exploit gas damping for increased response speed
 - Requires sealed, backfilled package
 - Neon gas provides necessary viscosity for 77K operation

MEMS Filter Response to Voltage Actuation Step

AFPA Phase II Imaging Device Objectives

- Demonstrate full capability MEMS filter array
 - Individual, independent filter tunability
 - Extended tuning range: 8.0 11.0 μm
 - Narrower bandwidth: 100 nm ± 20 nm @ 10.0 μm
 - Design and implement CMOS MEMS Actuation IC (MAIC) for full array actuation
- Demonstrate prototype AFPA sensor
 - Imaging structure with tunable MEMS array coupled with dual-band FPA
 - Demonstrate spectral tunability in an imaging array
 - Spectral Fovea configuration
- Technical challenges
 - Overcome tuning limit imposed by MEMS snap-down phenomenon
 - Optimized optical filter design
 - Implement negative capacitance MEMS actuation to overcome parasitic
 - Provide viscous MEMS damping
 - Heterogeneous technology integration in an integrated optimal subsystem
 - Tunable MEMS filter array coupled to DB-FPA in a compact, gas-filled, optical, cryo-enclosure

MEMS Actuation and Snap-down

- Charge control enables tuning beyond snap-down
- Limited by parasitic capacitance between driver and MEMS device
- Negative capacitance circuit can overcome C_p
- Requires low MEMS Q to prevent oscillation past stable point
- Optimize optical coatings to maximize tuning slope / minimize demands on -C_p tuning

Primary Sources of Parasitic Capacitance

- Parasitic Capacitance dominated by coupling capacitance
 - Values depend position inside filter array
 - Largest parasitic cap determines tuning range for entire array
- MAIC will add similar capacitance
- Negative capacitance actuation circuit under development to overcome C_p limited snap-down

Integrated AFPA Assembly (Conceptual)

- Gas filled enclosure enables viscous gas damping of MEMS filters
- Resealable cover enables reuse and testing of MEMS filter array component

GENERAL DYNAMICS

Advanced Information Systems

Planned AFPA Prototype Demonstration

Lab bench level testing planned using prototype AFPA sensor

- Demonstration of LWIR spectral response tunability
 - Independent filter actuation
- Demonstration of spectral analysis capability
 - Synthetic input spectra (filtered illumination)
 - Target materials if military interest
- Demonstration of spectral imaging of scene (lab)
- Demonstration of simultaneous LWIR tuning / broadband MWIR imaging
- Future development of field-testable camera with integrated optimal spectral interrogation and analysis algorithms

Summary

- Phase I LWIR tunable MEMS filter capability demonstrated
 - Tuning range 8.0 10.0 μm
 - Filter bandwidth 90 150 nm
 - Tuning speed ~ 1 msec
 - Simultaneous broadband MWIR transmission
 - Filters as small as 280 x 280 µm
- Phase II Integrated dual-band AFPA sensor configuration established
 - Spectral fovea configuration
 - Wide tuning range (8.0 11.0 μ m) achievable using novel actuation and optimized optical design
 - Independent filter tunability
 - Sensor package combining MEMS array, CMOS MAIC, Dual-band FPA with mechanical MEMS damping
 - Optical configuration requires minimal optical imaging sensor modifications

A Teledyne Technologies Company

